
International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015                                                                                                         105 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

Alternating-Direction Implicit Finite-Difference 
Method for Transient 2D Heat Transfer in a Metal 

Bar using Finite Difference Method 
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Abstract— Different analytical and numerical methods are commonly used to solve transient heat conduction problems. In this problem, 
the use of Alternating Direct Implicit scheme (ADI) was adopted to solve temperature variation within an infinitesimal long bar of a square 
cross-section. The bottom right quadrant of the square cross-section of the bar was selected. The surface of the bar was maintained at 
constant temperature and temperature variation within the bar was evaluated within a time frame. The Laplace equation governing the 2-
dimesional heat conduction was solved by iterative schemes as a result of the time variation. The modelled problem using COMSOL-
MULTIPHYSICS software validated the result of the ADI analysis. On comparing the Modelled results from COMSOL  MULTIPHYSICS 
and the results from ADI iterative scheme graphically, there was an high level of agreement between both results. 

Index Terms— ADI, Iteration, Metal Bar, Transient Heat Transfer 

——————————      —————————— 

1 INTRODUCTION                                                                     

Analytical solutions are difficult to arrive at, due to the in-
creasing complexities encountered in the development of 
technology. For these problems, numerical solutions are very 
useful, most notably when the geometry of the object is irregu-
lar and the boundary conditions are non-linear. 
The number of numerical methods and versions of each, avail-
able for use in tackling a given heat-flow problem, has in-
creased rapidly; however, the comparative advantages of the 
different techniques with respect to accuracy, stability, and 
cost remain unclear [1]. 
Numerical methods can be used to solve many practical prob-
lems in heat conduction that involve – complex 2D and 3D 
geometries and complex boundary conditions. 
Alternating Direction implicit (ADI) scheme is a finite differ-
ence method in numerical analysis, used for solving parabolic, 
hyperbolic and elliptic differential equations. ADI is mostly 
used to solve the problem of heat conduction. The equations 
that have to be solved with ADI in each step, have a similar 
structure and can be solved efficiently with theTridiagonal 
Matrix Algorithm. 
 
 
 
 
1.2 HISTORICAL BACKGROUND 

A lot of trends have occurred in the application of ADI meth-

od.The Alternating Direction Implicit scheme was first devel-
oped and employed by Peaceman and Rachford in 1955 [3] for  
the computation of two dimensional parabolic and elliptic 
Partial differential equations. 
Thomas et al [1] determined the ADI scheme as a cost effective 
technique with stability and accuracy, as compared with other 
standard Finite-element method for the analytical solutions for 
two problems approximating different stages in steel ingot 
processing. 
Afsheen [2]  used ADI two step equations to solve an Heat-
transfer Laplace 2D problem for a square metallic plate and 
used a Fortran90 code to validate the results. Finally, the re-
sults show the effect of Neumann boundary conditions and 
Dirichlet boundary conditions on the scheme. 
ADI has found application in diffusion, Ad𝑒́rito et al [3] em-
ployed ADI to solve a two-dimensional hyperbolic diffusion 
problem, where it is assumed that both convection and diffu-
sion are responsible for flow motion. They established the sta-
bility of the method using discrete energy method. Their result 
showcased the accuracy of the Alternating direction implicit 
method. 
Dehghan [4] used ADI scheme as the basis to solve the two 
dimensional time dependent diffusion equation with non-local 
boundary conditions. 
In this work, we used an Alternating direction implicit scheme 
to solve a transient conduction heat problem within an infini-
tesimal long bar of a square cross-section. We also modelled 
the problem using COMSOL multiphysics and compared its 
result with that of the ADI scheme numerical result. 
 
 
2.0 ALTERNATING DIRECTION IMPLICIT METHOD 

FOR 2D TRANSIENT HEAT TRANSFER 
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2.1 PROBLEM FORMULATION 
An infinitely long bar of thermal diffusivity ᾳ has a cross sec-
tion of side 2a. It is initially at a uniform temperature 𝜃∘ and 
then suddenly has its surface maintained at a temperature 𝜃1. 
The subsequent temperatures 𝜃(𝑥, 𝑦, 𝑡) inside the bar are to be 
solved and computed at various time-steps. 
Dimensionless distances, time, and temperature are defined 
by 

𝑋 =
𝑥
𝑎

, 𝑌 =
𝑦
𝑎

,    𝜏 =
ᾳ𝑡
𝑎2

,    𝑎𝑎𝑎  𝑇 =  
𝜃 − 𝜃∘ 
𝜃1 − 𝜃∘ 

 

Unsteady state conduction is governed by 𝜕
2𝑇

𝜕𝑋2
 +  𝜕

2𝑇
𝜕𝑌2

=  𝜕𝑇
𝜕𝜏

 

 
2.2 BOUNDARY CONDITIONS 
 
2.2.1 Initial Boundary Condition 
𝜏 = 0:    𝑇 = 0 Throughout the region 
 
2.2.2 Final Boundary Condition 
𝜏 > 0:      𝑇 = 1 Along the sides 𝑋 = 1  𝑎𝑎𝑎 𝑌 = 1, 
 
𝜕𝑇
𝜕𝑥

= 0  And  𝜕𝑇
𝜕𝑌

= 0 
 
Along the sides 𝑋 = 0  𝑎𝑎𝑎 𝑌 = 0 respectively. 

 
Figure 1.0: Initial temperature distributions of the sectioned   
bar 

 
Where   𝜃1 = 50°𝐶  
              𝜃°=10°𝐶 
    
2.3 Elliptic equation 
 
𝑇𝑥𝑥=𝑇𝑚−1,𝑛−2𝑇𝑚,𝑛+𝑇𝑚+1,𝑛

∆𝑋2
   (2.3.1)   

𝑇𝑦𝑦=𝑇𝑚,𝑛−1−2𝑇𝑚,𝑛+𝑇𝑚,𝑛+1
∆𝑌2

    (2.3.2) 
𝑇𝑥𝑥 + 𝑇𝑦𝑦 = 0     (2.3.3) 
 
𝑇𝑚−1,𝑛−2𝑇𝑚,𝑛+𝑇𝑚+1,𝑛

∆𝑋2
 + 𝑇𝑚,𝑛−1−2𝑇𝑚,𝑛+𝑇𝑚,𝑛+1

∆𝑌2
= 0 (2.3.4) 

 ∆𝑋2 = ∆𝑌2 = ∆𝑍2 

𝑇𝑚,𝑛
𝑖+1- 𝑇𝑚,𝑛

𝑖  = ∝∆𝑡
∆2

[𝑇𝑚+1,𝑛
𝑖 − 2𝑇𝑚,𝑛

𝑖 + 𝑇𝑚−1,𝑛
𝑖  +𝑇𝑚,𝑛+1

𝑖 − 2𝑇𝑚,𝑛
𝑖 +

𝑇𝑚,𝑛−1
𝑖 ]      (2.3.5) 

But τ = ∝∆𝑡
∆2

 
 
3.0 COMPUTATION OF MESH FUNCTION ALONG     

COLUMNS 
 
𝑇𝑚,𝑛
𝑖+1 − 𝑇𝑚 ,𝑛

𝑖 = 𝜏�𝑇𝑚+1,𝑛
𝑖 − 2𝑇𝑚 ,𝑛

𝑖 + 𝑇𝑚−1,𝑛
𝑖 � + �𝑇𝑚 ,𝑛+1

𝑖 − 2𝑇𝑚,𝑛
𝑖 + 𝑇𝑚 ,𝑛−1

𝑖 �    (3.0.1)                                                                                                                  
 
3.1 COMPUTATION OF MESH FUNCTION ALONG 

ROWS 
 
𝑇𝑚,𝑛
𝑖+2 − 𝑇𝑚,𝑛

𝑖+1 =τ[𝑇𝑚+1,𝑛
𝑖+2 − 2𝑇𝑚 ,𝑛

𝑖+2 + 𝑇𝑚−1,𝑛
𝑖+2 ] + [𝑇𝑚,𝑛+1

𝑖+1 − 2𝑇𝑚,𝑛
𝑖+1 + 𝑇𝑚,𝑛−1

𝑖+1 ]         
            (3.1.1) 

For i = 1,2,3…..n-1 and j = 1,2,3…..n-1 , both equations yields a 
tridiagonal system of equations. 
At When 𝒊 = 𝟎 𝒂𝒂𝒂 𝒎 = 𝟏 and 𝒏 = 𝟏 
−𝜏𝑇1,2

(1) + [1 + 2𝜏]𝑇1,1
(1) − 𝜏𝑇1,0

(1) = 𝜏𝑇0,1
(1) + [1 − 2𝜏]𝑇1,1

(0) + 𝜏𝑇2,1
(0)                 

                            (3.1.2) 
 
3.1.1 ITERATION ONE  (𝝉 = 𝟏) 
 

−𝜏50 + [1 + 2𝜏]𝑇1,1
(1) − 1 0 = 0 + [1− 2𝜏]0 + 0 

 
𝑇1,1

(1) = 20 
3.1.2 ITERATION TWO 
Equation (a) was used in computing  𝑇1,1

(1)  . 
 
It’s direction was alternated and used in computing the func-
tion  value for 𝑇1,1

(2) on the row, using equation (b)  
 
−𝑇𝑚−1,𝑛

𝑖+2 + 3𝑇𝑚,𝑛
𝑖+2 − 𝑇𝑚+1,𝑛

𝑖+2 =  𝑇𝑚,𝑛+1
𝑖+1 − 𝑇𝑚,𝑛

𝑖+1 + 𝑇𝑚,𝑛−1
𝑖+1                          (3.1.3) 

 
When i = 0 , n = 1 and m = 1 

−𝑇0,1
(2) + 3𝑇1,1

(2) − 𝑇2,1
(2) =  𝑇1,2

(1) − 𝑇1,1
(1) + 𝑇1,0

(1) 
𝑇1,1

(2) = 33.3 
 
3.1.3 ITERATION THREE 
equation (a) and (c) yields 
−𝜏𝜏𝑚,𝑛+1

𝑖+1 + [1 + 2𝜏]𝑇𝑚,𝑛
𝑖+1 − 𝜏𝜏𝑚,𝑛−1

𝑘+1 = 𝜏𝜏𝑚−1,𝑛
𝑖 + [1 − 2𝜏]𝑇𝑚,𝑛

𝑖 + 𝜏𝜏𝑚+1,𝑛
𝑖  

               (3.1.4) 
When i=2, m=1 and j=1 

[1 + 2𝜏]𝑇1,1
(3) = 𝜏10 + 𝜏10 + 𝜏50 + 𝜏50 + [1− 2𝜏]33.3 

(𝝉 = 𝟏) 
3𝑇1,1

(3) = 10 + 10 + 50 + 50 + [1 − 2]33.3 
𝑇1,1

(3) = 28.9 
 
3.1.4 ITERATION FOUR 

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 (𝐛) 𝐚𝐚𝐚 (𝐟) 𝐚𝐚𝐚 𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐚𝐚  
−𝑇𝑚−1,𝑛

𝑖+2 + 3𝑇𝑚,𝑛
𝑖+2 − 𝑇𝑚+1,𝑛

𝑖+2 =  𝑇𝑚,𝑛+1
𝑖+1 − 𝑇𝑚,𝑛

𝑖+1 + 𝑇𝑚,𝑛−1
𝑖+1            (3.1.5) 

 
𝒘𝒘𝒘𝒘 𝒊 = 𝟐 ,𝒏 = 𝟏 𝒂𝒂𝒂 𝒎 = 𝟏 

−𝑇0,1
(4) + 3𝑇1,1

(4) − 𝑇2,1
(4) = 𝑇1,2

(3) − 𝑇1,1
(3) + 𝑇1,0

(3) 
𝑇1,1

(4) = 30.4 
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3.2 COMPUTATIONS OF THE VARIOUS 
TIME STEPS ( 𝚫𝚫 ) FOR EACH ITERATION 

 𝜏 = ∝Δt
Δ2

   (3.1.6) 

Where        ∝= 0.1516  ,  Δ = 4  , 𝜏 = 1,2,3,4   , Δt = Δ2

∝
 

 
3.2.1 ITERATION ONE 
Time (Δt) = 26.38s 

 
3.2.2 ITERATION TWO 
Time (Δt) = 52.77s 

 
               3.2.3       ITERATION THREE  

Time (Δt) = 79.15s 
 

3.2.4 ITERATION FOUR 
Time (Δt) = 105.54 

 
4.0 RESULTS AND DISCUSSION 

 
4.1 TEMPERATURE DISTRIBUTIONS 
  
Table 1.0:    Initial Temperature distribution. 

 
10 10 10 

10 10 10 

10 10 10 

 
 
After Iteration one, (𝐭𝐭𝐭𝐭 = 𝟐𝟐.𝟑𝟑) , values were 

 
Table 2:  Temperature distribution at 26.38s 

10 10 10 

10 20 50 

10 50 50 

 
After Iteration two (time=52.8) , values were 
 
Table 3: Temperature distribution at 52.8s 

10 10 10 

10 33.3 50 

10 50 50 

 
After Iteration three (time=79.2) values were 
 
Table 4: Temperataure distribution at 79.2s  

10 10 10 

10 28.9 50 

10 50 50 

 
After Iteration Four (time =105.54) values were 
 
Table 5: Tempertaure distribution at 105.54s 

10 10 10 

10 30.4 50 

10 50 50 

 
 
 
4.2 VALIDATION OF RESULTS BY COMSOL      

MULTIPHYSICS 
 
Using Comsol Multiphysics, The metal bar was modelled 
with, with the following parameters assumed, to achieve the 
temperature  distribution within the metal bar. 
Length=1.16m 
Width=0.45m 
Thermal conductivity (K) = 1W/(m.K) 
Density( ρ) = 1kg/𝑚3 
Heat capacity (𝐶𝜌 =1 J/kg.K) 

 
The result which was in graphical user interface form is shown  
below as . 
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Figure 2: Temperature distribution within the metal bar 
 

 
Figure 3: Isothermal contour showing temperature distri-

bution within the metal bar 

 
 
 
Figure 4: A comparison of ADI results with COMSOL    

results 
CONCLUSIONS 
The two Dimensional Heat problem was modelled using 

COMSOL MULTIPHYSICS which gave a graphical distribu-

tion of temperature within the metal and a graph showing the 
convergence of the finite difference iterative scheme. 

The ADI iterative scheme was highly effective in determin-
ing the nodal temperatures within the sectioned metal bar. 

On comparing the Modelled results from COMSOL  MUL-
TIPHYSICS and the results from ADI iterative scheme, there 
was an high level of agreement between both results , notably 
if one observe closely the results for node 𝑇1,1

1 =20, 𝑇1,1
2 =33.3 , 

𝑇1,1
3 =28.9 , 𝑇1,1

4 =30.4 with the temperature distribution of the 
Mid-section of the Metal Bar with COMSOL MULTIPHYSICS, 
a large level of conformity exists. 

For problems with a simple geometry, the ADI finite differ-
ence method  

is  cost-effective with stability and accuracy similar to the 
finite-element methods. 
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